|
In complex dynamics, the bifurcation locus of a family of holomorphic functions informally is a locus of those maps for which the dynamical behavior changes drastically under a small perturbation of the parameter. Thus the bifurcation locus can be thought of as an analog of the Julia set in parameter space. Without doubt, the most famous example of a bifurcation locus is the boundary of the Mandelbrot set. Parameters in the complement of the bifurcation locus are called J-stable. == References == * Alexandre E. Eremenko and Mikhail Yu. Lyubich, ''Dynamical properties of some classes of entire functions'', Annales de l'Institut Fourier 42 (1992), no. 4, 989–1020, http://www.numdam.org/item?id=AIF_1992__42_4_989_0. * Mikhail Yu. Lyubich, ''Some typical properties of the dynamics of rational mappings (Russian)'', Uspekhi Mat. Nauk 38 (1983), no. 5(233), 197–198. * Ricardo Mañé, Paulo Sad and Dennis Sullivan, ''On the dynamics of rational maps'', Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217, http://www.numdam.org/item?id=ASENS_1983_4_16_2_193_0. * Curtis T. McMullen, ''Complex dynamics and renormalization'', Annals of Mathematics Studies, 135, Princeton University Press, Princeton, NJ, 1994. ISBN 0-691-02982-2. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Bifurcation locus」の詳細全文を読む スポンサード リンク
|